skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rocha-Mendoza, Israel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Single-shot 3D optical microscopy that can capture high-resolution information over a large volume has broad applications in biology. Existing 3D imaging methods using point-spread-function (PSF) engineering often have limited depth of field (DOF) or require custom and often complex design of phase masks. We propose a new, to the best of our knowledge, PSF approach that is easy to implement and offers a large DOF. The PSF appears to be axially V-shaped, engineered by replacing the conventional tube lens with a pair of axicon lenses behind the objective lens of a wide-field microscope. The 3D information can be reconstructed from a single-shot image using a deep neural network. Simulations in a 10× magnification wide-field microscope show the V-shaped PSF offers excellent 3D resolution (<2.5 µm lateral and ∼15 µm axial) over a ∼350 µm DOF at a 550 nm wavelength. Compared to other popular PSFs designed for 3D imaging, the V-shaped PSF is simple to deploy and provides high 3D reconstruction quality over an extended DOF. 
    more » « less